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Synopsis Information, energy, and matter are fundamental properties of all levels of biological organization, and life emerges
from the continuous flux of matter, energy, and information. This perspective piece defines and explains each of the three
pillars of this nexus. We propose that a quantitative characterization of the complex interconversions between matter, energy,
and information that comprise this nexus will help us derive biological insights that connect phenomena across different levels
of biological organization. We articulate examples from multiple biological scales that highlight how this nexus approach
leads to a more complete understanding of the biological system. Metrics of energy, information, and matter can provide
a common currency that helps link phenomena across levels of biological organization. The propagation of energy and
information through levels of biological organization can result in emergent properties and system-wide changes that impact
other hierarchical levels. Deeper consideration of measured imbalances in energy, information, and matter can help researchers
identify key factors that influence system function at one scale, highlighting avenues to link phenomena across levels of
biological organization and develop predictive models of biological systems.

Introduction
Our current understanding of Biology has been built
primarily through reductionism. This reductionist ap-
proach has resulted in highly specialized knowledge;
however, developing better ways to identify, character-
ize, and predict phenomena across spatial and tempo-
ral scales is becoming increasingly important. Better
understanding and engineering of biological systems
will undoubtedly require new conceptual and analyti-
cal frameworks that transcend traditional disciplinary
boundaries in order to discover universal rules of life.
Here, we describe one possible conceptual framework:
that biological systems in their broadest definition
are anti-entropy systems that emerge from the nexus

of energy, information, and matter. We propose that
one avenue for reintegrating biological disciplines is
through studying this nexus across systems and scales in
order to develop quantitative and, ultimately, predictive
models of biological phenomena. This perspective
piece explains each of the three pillars of this nexus.
We will articulate examples from multiple biological
scales that highlight how this nexus approach leads
to a more complete understanding of the biological
system. Finally, we provide some opportunities and
challenges to employing this nexus approach in prac-
tice. Our vision is that characterizing the nexus of
energy, information, and matter will help researchers
identify system components currently missing from
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Nexus of energy, information, and matter 2083

biological studies and thereby reshape our experiments
and interpretations.

How do energy, information, and matter
interact to produce outcomes in biological
systems?

Information, energy, and matter are fundamental
properties of all levels of biological organization
(Schroedinger 1944; Prigogine 1967; Beck and Schlögl
1993; Murphy and O’Neill 1997; Smith 1999, 2000;
Brewer and Smith 2011), and life emerges from the
continuous fluxes of matter, energy, and information.
We use the term energy to refer to a property of physical
or chemical resources that enables work to support life
functions such as moving, feeding, reproducing, and
growing. The practical definition of information for the
biological sciences that we use here is anything that
has the potential to reduce uncertainty for a biolog-
ical entity (e.g., DNA, RNA, communication signals
between cells or organisms, and presence or absence
of participants in a community). This definition of
information is based primarily in information theory
and is necessarily broad because of our focus on a
diversity of biological systems (i.e., from atomic to
ecological). However, different types of information
may be more relevant to certain biological questions
(summarized recently by O’Connor et al. 2019). We
propose that a quantitative characterization of the
complex interconversions between matter, energy, and
information that constitute this nexus will help us
derive biological insights that connect phenomena
across different levels of biological organization and
that could improve our ability to predict responses of
biological systems to disturbance.

Matter can be quantified as mass, making it relatively
straightforward to relate across levels of biological
organization. Although experimentally determining
mass may be technically challenging, particularly at
the molecular or ecosystem scales, the same units
apply across scales. However, the form that matter
takes will have a dramatic impact on both energy
and information. For example, biological units with
the same mass may differ in elemental composition,
molecular complement, cell number or cell size, organ
sizes, or species composition. Determining which mass
components or forms are most relevant for information
and energy flow is essential to formulating a predictive
theory of the energy–information–matter nexus.

Energy can be quantified at all levels of biological
organization as well. For example, at the molecular
scale, chemical reactions such as ATP hydrolysis can
release energy, such that production or breakdown
of ATP or other molecules are common measures of

energetic flux. At the cellular, tissue, or organismal
levels, energy use is typically estimated by measuring
respiration rate. At the ecosystem scale, energy is quan-
tified by using energy balance equations to estimate
radiation inputs and outputs and storage of energy in
biomass (e.g., photosynthetic carbon fixation) and its
mobilization and transformation as it moves through
an ecosystem (e.g., Kooijman 2010). Radiative balance
regulates heat exchange and temperature, both of which
are crucial in determining critical biological processes
ranging from metabolism to survival and reproduction.
Quantifying energy necessarily depends on measuring
energy change, and experimental techniques often
measure only a subset of the energetic flux, challenging
a complete consideration of energy conversion.

Information can also be quantified, in principle, at all
levels of biological organization. Entropy is a measure
of uncertainty in a system (Box 1), and information
is negatively related to uncertainty in a quantifiable
way. The field of information theory, first developed
by Claude Shannon (1948), measures information as
statistical entropy and provides well-defined methods
for quantifying information. The term “entropy” is used
both in information theory and in thermodynamics,
and entropy in these two cases does not represent
equivalent concepts (Wicken 1987; Box 1). Because
biological systems are composed of structural units
(e.g., atoms, molecules, cells, and organisms), infor-
mation is inherent to the structure of the biological
system; this syntactic information results from the non-
randomness of biological systems in time and space
(O’Connor et al. 2019). To the extent that biological
systems are ordered and in disequilibrium with their
surroundings, they require energy to overcome the
natural tendency of physical systems to move towards
increasing entropy. Information theoretic approaches
have been applied across scales, from the molecular
scale (e.g., in the genetic code; Vetsigian et al. 2006)
to the ecological scale (e.g., to quantify species diver-
sity using Shannon’s Diversity Index and Maximum
Entropy methods (Barnes et al. 1998; Spellerberg and
Fedor 2003; Haegeman and Etienne 2010). Information
theory is a central tenet both of sensory neuroscience
and of signal detection theory in psychology and
animal behavior, and has recently been applied to
biochemical and social networks. However, despite the
formal statistical definition and its demonstrated appli-
cation to quantifying information, actually measuring
information in biological contexts is quite difficult.
One reason is that biological systems include different
types of information, and the unification of these
types of information remains challenging (O’Connor
et al. 2019). While syntactic information describes
the nonrandom spatiotemporal structure in a system,
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semiotic information refers to what signals (e.g., be-
tween cells or between organisms) or sensory cues from
the environment represent about the state of the system
(O’Connor et al. 2019; see also structural and dynamic
information; Morowitz 1968). The distinction between
these types of information is useful because different
subfields of biology may use the same term (i.e.,
“information”) to describe vastly different concepts. As
our case studies below illustrate, information within a
molecule, cell, or ecosystem can take multiple forms, so
a comprehensive accounting of information requires a
deep understanding of the biology. Moreover, biological
systems do not process and act upon all available
information, such that quantifying information content
using information theory may overestimate the amount
of information that is biologically relevant.

Box 1

We outline here fundamental physical principles that
demonstrate some of the different ways that infor-
mation, energy, and matter can be mathematically
conceptualized and related quantitatively. We note
that these equations are not directly applied to most
biological empirical studies, in that few biologists fully
account for energy and information flow. We intro-
duce these equations and relationships to illustrate
the mathematical underpinning of the nexus and to
clarify physics terminology that is foundational to the
framework proposed here.

The thermodynamic entropy S of a system with N
possible microstates (i) is given by:

S = −k
N∑

i

Pi · ln Pi, (1)

where Pi denotes the probability that the system is
in microstate i, and k represents the Boltzmann’s
constant. Thermodynamic entropy of the system
represents the uncertainty about which microstate the
system occupies. Empirical measurements can reveal
the system macrostate, but each macrostate has mul-
tiple possible microstates that are indistinguishable
to experimenters (see Wicken (1987) for additional
discussion of unique features of thermodynamic
entropy).

Similarly, the Shannon entropy (designated
“H(SE)” for clarity) is defined as:

H (SE) = −
N∑

i

Pi · log Pi, (2)

where Pi is the probability of occurrence of state i
given the N possible states of the system. H(SE) is a
measure of the information content of an observed
event, which in a biological context could refer to an

experiment, population, or signal. Shannon entropy
differs from thermodynamic entropy in the constant
k and the base of the logarithm, which typically would
be two for a binary system or four in the case of DNA,
representing the four nucleotides. Moreover, Shannon
entropy calculations vary depending on the choice
of the possible set of states to which the observed
state is compared (see Wicken (1987) for extensive
comparison between thermodynamic entropy and
Shannon entropy). The set of reference states for this
calculation represent those considered possible before
the event is observed. For example, prior knowledge
might reduce the set of possible states of the system
under consideration, hence altering the measure of
H(SE) for a particular event.

To further explore Shannon entropy, we consider
the information in a DNA molecule. For one nu-
cleotide, there are four possible states: A, C, G, or
T. For a strand with two nucleotides, there are 16
possible states (AA, AC, AG, AT, CA, CC, CG, CT,
GA, GC, GG, GT, TA, TC, TG, and TT) because
the information in DNA depends on order. A strand
with three nucleotides has 64 possible states. The
Shannon entropy, like the thermodynamic entropy,
depends on the size of the system; entropy is higher
for DNA strands with more nucleotides, as the system
contains more possible states. Note that both S and
H(SE) are maximized at a value of log(N) when all
of the N system (micro)states have equal probability
(Pi = 1/N). DNA sequences within conserved protein
coding genes thus have lower entropy than maximal,
as all arrangements of nucleotides are not equally
likely. Both S and H(SE) are zero for the case where
one (micro)state j has probability Pj = 1 and all other
(micro)states have zero probability Pi = 0 for i �=
j. The event or outcome from the vantage point of
information theory contains zero information. For
example, if you know the genome sequence of a
person, the sequence of their monozygotic twin has
very low entropy (only non-zero because of somatic
mutations). The Shannon entropy thus is linked to the
amount of uncertainty or surprise in an experimental
outcome or observation. We note that despite the
generally negative relationship between entropy and
information, a variety of equations relating informa-
tion and entropy apply, reflecting the diversity of uses
of the word "information" (e.g., Morowitz 1968; Xu
and Jiang 2010).

A higher-order probabilistic representation of a
biological system can be described that theoretically
relates the entropy and energy of the system. Reducing
thermodynamic entropy S costs free energy:

�G = �H − T�S, (3)
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where G is the Gibbs free energy, H is the enthalpy,
and T is the Kelvin temperature.

A derivation of the Gibbs equation that is useful in
biological systems on a small scale is:

�G = − nFE0, (4)

where the change in Gibbs free energy is related to the
number of electrons n, the Faraday constant F, and
the electrical potential of the cell E◦, which can be
interpreted as any electron donor/acceptor pair.

Many equations relate energy and matter (e.g.,
Kooijman 2010 at organismal–ecological scales), as
interconversions between energy and matter are a
widely studied part of the Energy–Information–
Matter nexus in some fields. Small biological scales
permit the adaptation of Einstein’s Theory of Relativ-
ity to biology:

E = mc2, (5)

where E is the total energy of the system, m is the mass
of the system, and c is the speed of light. The Theory of
Relativity has been used to estimate the energy needed
for electrical conductance, or rates of proton or carbon
tunneling in biochemical catalysis (e.g., Kohen and
Klinman 1999; Chowdhury and Banerjee 2000; Reece
et al. 2006).

These physical laws have been directly applied
to few biological systems. Even the examples of
biological nexuses we discuss in this paper have
mathematical formulations that describe only a subset
of the nexus. Comprehensive application of physical
laws to biological questions is most feasible at sub-
micrometer scale (often in dilute aqueous buffers),
under special cases (e.g., sealed anaerobic micro-
bial cultures), or at very short timescales; however,
quantitative treatment of energy, information, and
matter interconversions that span scales of biological
organization has great promise to provide biological
insights.

Although living systems use energy and matter
to create order and hence are anti-entropy systems,
noise itself can be advantageous. For example, random
mutation is necessary for evolution to occur. New
enzyme functions (Näsvall et al. 2012), strain variants
(Woods et al. 2011), and metabolic potential that can
be accessed to gain a competitive advantage (Vemuri
et al. 2006; Catlett et al. 2015) all require some amount
of entropy as the creative canvas. On more rapid time
scales, stochasticity in neural systems can also improve
information processing performance (McDonnell and
Ward 2011). These examples illustrate that living
systems do not universally move towards reducing

uncertainty or stochasticity by maximizing information
transmission and processing.

In biological scenarios, energy, matter, and infor-
mation are constantly being interconverted, so the
nexus between them is a dynamic system. Thermo-
dynamics uses straightforward equations that relate
energy, information, and matter (Box 1). Because
living systems are not closed systems, but rather open
systems that exist far from equilibrium (Schneider and
Kay 1994), applying physical principles to biology is
inherently complex. Our typical goal as biologists is
not to completely account for the changes in statistical
entropy, enthalpy, and Gibbs free energy in cells,
organisms, or ecosystems. Practitioners of biological
subdisciplines typically study a part of any given system
and account for only a subset of all inputs, outputs, and
system components in their studies. Explicit consider-
ation of the energy–information–matter nexus could
help identify overlooked parts of complex systems.
For example, a physiologist might measure oxygen
consumption as a measure of energy consumption
through respiration but not quantify heat loss or gain.
Similarly, a molecular biologist might measure DNA
content without characterizing the genetic sequence
that determines information content or potential (but
see, Jiang and Xu (2010) for one approach to quantify
the information content of DNA). We propose that
explicitly considering the nexus of energy, information,
and matter can highlight critical inputs, outputs, and
components currently missing from biological studies
and thereby reshape our experiments and interpreta-
tions.

To illustrate insights derived from considering
the energy–information–matter nexus, we highlight
the ribosome, a highly conserved ribonucleoprotein
complex—a molecular machine—that generates the
polypeptides essential to all organisms (Schmeing and
Ramakrishnan 2009). By iteratively unravelling the
many ways energy and information interact in the
context of ribosome function, we have learned not only
how cells engage with, develop in, and respond to their
environment (Ecker and Schaechter 1963; Maitra and
Dill 2015); we have also gained a tool to describe the
evolutionary trajectory of life on earth (Woese and Fox
1977). Ribosomes integrate environmental and cellular
information to translate the ribonucleotide triplet code
from messenger RNA into a polypeptide of amino acid
residues (Nirenberg and Matthaei 1961; Nirenberg and
Leder 1964), thereby using information and energy to
reconfigure matter into proteins necessary for essential
cellular chemical and physical work. The resulting
proteins both use and produce energy. Concepts from
information theory and thermodynamics have been
key to understanding ribosome function (Gamow
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et al. 1956, Sievers et al. 2004). Ribosomes reduce
thermodynamic entropy by binding substrates and
using energy stored in bonds of guanosine triphosphate
(GTP) to catalyze polypeptide chain elongation and
termination. GTP availability largely determines the
rate of protein synthesis as guided by information from
the triplet code (Savelsbergh et al. 2000; Åqvist and
Kamerlin 2015). The physical structure of ribosomes
depends on RNA and protein sequences of ribosomal
components and on environmental factors such as
temperature (VanBogelen and Neidhardt 1990), such
that information and energy external to the ribosome
influence its material form. Characterizing informa-
tion, energy, and matter within the ribosome and its
environment has revealed ribosomes to be sophisti-
cated sensors of metabolism that gate protein pro-
duction and cellular behavior (reviewed in Chubukov
et al. 2014; Maitra and Dill 2015; Dai and Zhu
2020).

Fundamentally, insights into the nexus of energy,
information, and matter on biological systems require
an understanding across multiple levels of biological
organization at multiple spatial and temporal scales.
Even the relatively straightforward function of the
ribosome depends on a broader cellular environment,
as previously described. One challenge mentioned
above is finding metrics of energy, information, and
matter that can be quantified in a common way across
levels of biological organization. Another challenge is
that the propagation of information and energy through
levels of biological organization can result in emergent
properties and system-wide changes that impact other
hierarchical levels. Defining the spatial and temporal
scale of study necessarily draws boundaries that often
preclude fully accounting for the flows of energy, infor-
mation, and matter that are relevant to biology. Thus,
defining the boundaries of a biological system typically
results in imbalanced flows of energy, information,
and matter. For example, an individual cell exists in
relationship to other cells that influence its physiolog-
ical processes. While we can quantify the conversion
between information and matter that occurs during
transcription, the information, energy, or matter that
motivate that transcription may originate in the extra-
cellular environment. Additionally, the genomic DNA
that stores the information of the cell is itself produced
by and the result of a long series of prior events and
experiences of abiotic and biotic interactions that have
shaped through natural selection the genome sequence.
Similarly, if the scale is a multicellular organism, such as
an animal or plant, then its mere movement or dispersal
across space moves information, energy, and matter
and exposes the organism to new energy, information,
and matter in the environment. Deeper consideration

of measured imbalances in energy, information, and
matter can help researchers identify key factors that
influence system function at one scale, highlighting
avenues to link phenomena across levels of biological
organization.

In summary, the energy–information–matter nexus
is relevant at all scales of biological organization and
may provide a common framework that helps link
phenomena at different levels of biological organization.
This framework offers great potential to highlight emer-
gent phenomena and missing key regulators of biologi-
cal systems. The next section illustrates applications of
this framework at different levels of organization from
molecules to ecosystems.

Energy–information–matter nexuses:
challenges and examples

We outline below four examples of applications of
how considering the nexus of energy, information,
and matter can facilitate new insights. Examples are
ordered from the smallest to largest spatial scales,
and each highlights distinct features of the energy–
information–matter nexus. We explain throughout how
prior research has focused on complex relationships
between energy, information, and matter, and we
identify challenges and opportunities in applying the
energy–information–matter nexus framework.

(1) Microbes as a nexus: integrating matter, energy, and
information to predict and design biological systems
One area where the concept of the energy–
information–matter nexus is already being applied
is in microbiology. The ease with which laboratory
strains of Escherichia coli and Saccharomyces cere-
visiae can be manipulated has led to the emerging
field of synthetic biology where genetic elements
are recombined to design new traits and behaviors.
Synthetic biology has contributed to, and continues
to benefit from, efforts to understand the interplay
between metabolic pathways and energy conser-
vation mechanisms of the organism as a whole.
Synthetic biologists are developing increasingly
sophisticated approaches to study microbial growth
grounded in energy and information (via physics
and information theory) with the aim toward
predicting and designing microbial behaviors to
benefit society.

An essential concept in understanding the in-
herent potential of a microbial system is the use
of Gibbs free energy to describe the energy that is
available to do chemical or mechanical work within
the cell (Shapiro and Shapley 1965). Microbiologists
explore the nexus of energy, information, and

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/article/61/6/2082/6347348 by Florida International U

niversity user on 26 M
arch 2022



Nexus of energy, information, and matter 2087

matter in living cells when they use the Gibbs equa-
tion (Box 1) to explain, predict, and successfully
cultivate new organisms. For example, the appli-
cation of Gibbs free energy to microbe-catalyzed
biochemical reactions has allowed us to estimate
key thermodynamic properties of ATP and the
enzyme ATPase that allows release of bioavailable
energy by ATP hydrolysis (Friedl and Shairer 1981;
Müller and Hess 2017). The Gibbs equation predicts
the environmental conditions that can support life
such as in extreme Earth habitats or in theoretical
or extraterrestrial habitats (as in the sub-field of
Astrobiology; Decker et al. 1970; Tijhuis et al. 1993).
It has also been used to predict the electrical current
required to support growth of microbes on cathodes
(Rabaey and Rozendal 2010). Finally, thermody-
namic calculations involving Gibbs free energy were
essential to guiding the laborious, expensive, and
time-consuming culturing experiments leading to
discovery of new Orders of microorganisms.
However, the spontaneity of a chemical reaction
as determined from Gibbs free energy change is
not sufficient to indicate whether an organism can
grow, as the Gibbs equation does not consider
information transmission or kinetics. Organisms
transmit hereditary (syntactic) information that
specifies the molecules and resulting chemical
processes that are necessary to harness available
free energy to maintain homeostasis and create
progeny. The biochemistry to support life must also
occur on a timescale faster than the entropic decay
of cellular structures. The physical environment
(temperature, pH, oxidation/reduction potentials,
and so on) determines the physical stability of
biological macromolecules and directly influences
the free energy required to maintain homeosta-
sis. Additionally, the nutrient requirements of the
organism (as defined by the genetic information)
must be obtained on a timescale that maintains
sufficient intracellular chemical fluxes to maintain
homeostasis and allow reproduction.

Nevertheless, applying the Gibbs equation ap-
proach systematically across the broader field of
microbiology offers a promising avenue to extend
descriptions of microbial genetic diversity so as to
characterize functional roles of species in complex
communities. The Gibbs equation is a useful start-
ing point to formulate hypotheses about the func-
tion of known or unknown microbes that can guide
experiments. Sequencing microbial metagenomes
reveals a vast unexplored DNA information space.
Amongst that cacophony of sequences, we can
discern patterns of energy conservation strategies
that relate to the Gibbs equation. For instance,

the enzymes and cofactors underpinning growth
are biochemically coupled in cultured microbes.
Enzymes such as those of the TCA cycle, Wolfe
cycle, and Wood–Ljungdahl metabolic pathways are
not only often coupled in how they assemble inside
cells (Beeckmans and Kanarek 1981; Förster and
Staib 1990; Costa et al. 2010, Lieber et al. 2014;
Adam et al. 2018), but also at the informational
level of gene expression when organized into
co-transcribed operons or co-regulated modules
(Teichmann and Babu 2002; Grahame et al. 2005;
Müller et al. 2013). Furthermore, the presence
and relative abundance of enzymes in different
metabolic pathways roughly relate to the nutrient
environment experienced by the organisms. How-
ever, without full knowledge of the energetic inputs
and outputs, enzyme functions, and regulatory
information processing, we struggle to confidently
ascribe functions of metabolic enzymes and hence
ecological roles of organisms (Friedberg 2006;
Widder et al. 2016). We cannot determine which
patterns in metabolic pathway diversity are due to
chance, the extent of undiscovered pathways, or
whether and how physical and environmental fac-
tors constrain metabolic evolution (Bordbar et al.
2014; Crona et al. 2020). This lack of knowledge
limits our ability to design novel pathways, to infer
soil greenhouse gas emissions using environmental
microbial community metagenome data, or to
develop synthetic gut microbiomes as therapeutics.
To produce technologies that fully harness mi-
crobial biodiversity, the applications must account
for conservation of mass, bioenergetics, and both
intracellular signaling and heritable information.

(2) Morphogenesis: integration of intrinsic and extrinsic
information, energy, and matter for optimum pheno-
types

Morphogenesis is the formation of organismal
structures through development. During morpho-
genesis, information guides the transformation
of energy and matter to produce mature cells,
tissues, organs, and organisms capable of living
in their environment. Because morphogenesis is
fundamental to producing phenotypes that can
function in selective regimes, explicitly considering
the energy–information–matter nexus would help
identify missing inputs and components that shape
phenotypic diversity. The rise of molecular genetics
and genome sequencing promised to decode all the
information needed to produce a living organism.
Acquisition of this “code” was thought to be a
clear step towards predicting and manipulating
organismal structure and function based on the
underlying assumption that all the information
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needed to form an organism is contained in the
genome. Under this model, genetic information
guides conversions between energy and matter
that ultimately result in a biological system. This
metaphor of “genes as blueprints” is pervasive
in developmental biology but woefully inadequate
(Nijhout 1990). In fact, developmental processes are
elaborate, context-dependent temporal and spatial
processes, and morphogenesis occurs when gene
products interact with their environment (Nijhout
1990). Indeed, the external environment provides
more than just energy (e.g., sunlight) and matter
(e.g., water). It also contains informational inputs
that must be integrated successfully during devel-
opment. The information stored in genomic matter
must be decoded and converted into chemical
materials that are used in developmental processes,
which are largely self-organizing (Nijhout 1990;
Moczek 2012). Self-organizing processes use a
wealth of extrinsic information, in addition to
that stored in the genome (Vinogradov 2004), to
influence developmental trajectories. In this way
self-organization can be viewed as an informa-
tionally efficient way of producing phenotypes
that naturally meet the physical demands of the
biotic and abiotic environments in which they
occur.

One example of how the information–energy–
matter nexus is important in characterizing mor-
phogenesis is in the development of plant cells and
tissues. Plant cells expand when internal turgor
pressure exceeds the strength of the cell wall,
resulting in plastic deformation of the cell wall
(Kutschera 1991). Turgor pressure is controlled
partially by biological processes (e.g., gene expres-
sion influencing osmotic accumulation) but also
by abiotic conditions such as water availability,
which influences the Gibbs free energy in the
system and, thus, the amount of work that can be
done (Box 1). Plastic deformation of the cell wall
is opposed by deposition of additional cellulose
fibrils that strengthen the cell wall. Interestingly,
the orientation of the microtubules that direct
fibril deposition is controlled by mechanical stresses
on the cell (Green 1962; Panteris et al. 1993;
Wernicke et al. 1993; Panteris and Galatis 2005;
Paradez 2006; Hamant et al. 2008; Sampathkumar
et al. 2014; Mirabet et al. 2018). Thus, genetic
information is combined with external and internal
resources (energy and matter) to produce biochem-
ical building blocks (e.g., microtubules and cellulose
fibrils), but the resulting cell and tissue pheno-
types result from physical interactions with the
external environment. Insofar as the extracellular

environment influences cell wall properties and cell
shape morphogenesis, cell sizes and shapes may
themselves store information about the external
environment. The cell types for which this process
has been well-elucidated are leaf epidermal “puzzle”
cells. In a given leaf, these cells all possess the same
genome yet are highly variable in shape (Sapala et al.
2018; Vőfély et al. 2019). The variation in puzzle
cell shape within an organ can be modeled strictly
by incorporating the mechanical feedback process
described above, in which cell wall reinforcement
responds to local stresses to oppose turgor-driven
cell wall expansion and deformation. Additionally,
much of the large diversity of epidermal cell shapes
apparent among species (Vőfély et al. 2019) can be
recapitulated by modifying just a few parameters in
this model, such as growth anisotropy and overall
organ growth rate (Sapala et al. 2018). While we
typically consider that energy and matter are pro-
vided by the environment of the cell (e.g., sunlight
and water), the cell’s interactions with its physical
environment also provide a wealth of information.
Understanding the developmental origins of phe-
notypes, therefore, requires explicit consideration
of information, energy, and matter both inside
the cell and outside the cell. Furthermore, using
environmental information—rather than employ-
ing rigid developmental programs based solely on
genetic information—allows biological structures
to be built with less encoded information, and to be
both physically robust and also variable and tunable
to the environment.

Another aspect of genomic information is worth
noting. Because the genome is composed of matter
(nucleic acids), it occupies physical space inside
the cell. Therefore, the size of the genome limits
minimum cell size, and because smaller cells have a
higher ratio of surface area-to-volume, smaller cells
enable higher rates of diffusion and photosynthesis
(Roddy et al. 2019; Théroux-Rancourt et al. 2021).
While smaller genomes, in principle, contain less
syntactic information, in plants small genomes
are composed of a higher fraction of gene-coding
regions than are large genomes (Novák et al. 2020).
Additionally, genome downsizing enables greater
cell size variation and, thus, greater anatomical plas-
ticity. This allows species with smaller genomes to
better fine-tune their anatomy to the environment
(Simonin and Roddy 2018; Roddy et al. 2019). Thus,
genome downsizing (i.e., potential loss of syntac-
tic information) may be associated with greater
reliance on environmental information (i.e., semi-
otic information) to drive cell and tissue devel-
opment, thereby matching phenotypes to their
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ecological setting better than if the developmental
program were strictly and entirely encoded in
the genome. The “genes as blueprints” metaphor
ignores the role of the environment in providing
information, but by embracing the nexus of energy,
information, and matter, we can improve our
understanding of morphogenesis in order to better
predict and synthesize phenotypes and functions.

(3) The energy-information tradeoff in neural systems
depends on neuron size, cell types, and coding
strategies

Neural systems exhibit two related aspects of
the energy–information–matter nexus that remain
open questions. One is the influence of qualities
and quantities of matter in defining energy and
information tradeoffs, and the other is that all
available information is not necessarily used by the
biological system.

Neurons use action potentials and other
changes in membrane potential to encode
semiotic information such as signals from other
organisms and cues from the environment. Every
temporary membrane depolarization initiates
neuron repolarization. This repolarization requires
energy, as the enzyme sodium–potassium ATPase
hydrolyzes one ATP molecule to move two
potassium ions into the cell and three sodium
ions out of the cell. Investigators studying the
photoreceptor cells that convert light information
to neural signals have been remarkably successful
in defining these energy and information
intersections. Analyses of photoreceptor ion
channel function and Shannon information (a
syntactic information measure) have identified a
direct tradeoff. Calculated estimates of sodium-
potassium ATPase activity approximate single-
cell biophysical measurements of the energetic
costs of photoreceptor function (Laughlin
et al. 1998). Further, photoreceptor cells that
can transmit information at higher rates are
more energetically costly to maintain (Niven
et al. 2007). The latter conclusion indicates
that features that can be considered qualities
of matter, such as cell size and ion channel
content, alter the quantitative relationship
between energy and information. Although the
information–energy tradeoff in photoreceptors can
be precisely quantified in ATP molecules consumed
per bit, even these precise experiments have
limitations. For instance, this energetic accounting
evaluates immediate ion flow but not broader
costs of signaling over time, such as those of
neurotransmitter packaging, protein production
and transport, or photoreceptor development.

Moreover, the measure of information and
calculated reduction in Shannon entropy is
restricted to the experimental stimulus set used
(as in reference states in Box 1). In contrast, real
world stimuli are multiple and constantly changing.

These limitations aside, these studies illustrate
relationships between energetic costs and infor-
mation processing in sensory systems. However,
extensions of these same approaches in other
neural systems have been limited by our incomplete
understanding of neural coding principles. We have
an incomplete understanding of how information
inherent in neurophysiology is used. In classic
neural coding studies, a sensory neuron’s rate
of action potentials represents properties of the
sensory input, enabling a simple calculation of
energy consumption per bit based on the number
of action potentials used in representing a stimulus.
Ion channel complements and placement establish
varying costs of action potentials, so this calculation
would vary based on both cell type (the form of
matter) and firing patterns in response to a stimulus
(Sengupta et al. 2010; Lewis et al. 2014; Niven 2016).
However, neurons employ other dynamic types of
coding as well. Examples include shifts in relative
timing of action potentials or phase of action poten-
tials relative to large-scale oscillations (Panzeri et al.
2010). In these examples, links between energetic
costs and information content are less direct or un-
derstood. Likely, neural firing multiplexes different
types of codes, and neural dynamics reflect multiple
features of natural sensory stimuli on different time
scales (Panzeri et al. 2010). The efficiency possible
in multiplexed coding is in line with other features
of neural systems that reduce energetic costs of
information for individual cells. Understanding the
implications of neural multiplexing would require
looking at the neural energy–information–matter
nexus with orders of magnitude higher complexity
than is done currently, and methods of doing so
remain to be developed.

Other factors complicate the idea of an energy-
information tradeoff in neural systems. Populations
of neurons can carry redundant information. More-
over, the presence of syntactic information in neural
firing patterns does not imply the animal uses that
information to direct its behavior (Panzeri et al.
2017). Hence, the energetic cost of information
actually used by the organism is quite challenging
to define. Related to matter, nervous systems have
static or fixed costs, such as nonzero baseline
firing rates and neurotransmitter turnover and cell
maintenance, that constrain information capacity.
These fixed costs, all in some way related to either
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quantity or quality of the biological matter, can
vary widely among neuronal subtypes. Additionally,
maintaining more neurons increases system infor-
mation capacity but in a nonlinear fashion, typically
with diminishing returns at some point. Hence
there is no simple relationship between information
capacity, energetic demand, and either total number
of neurons or mass of neural tissue. This situation
represents a tremendous opportunity for theoretical
and empirical biological scientists to come together
to identify general principles about how animals
balance these energetic and material costs with the
benefits of reduced uncertainty about the abiotic
and biotic environment.

(4) Ecological stoichiometry: phosphorus mediates in-
formation and energy across scales—from genes to
ecosystems

A form of matter, the element phosphorus, is
an important mediator of the relationship between
energy and information, and phosphorus illus-
trates the potential for the energy–information–
matter nexus to bridge levels of biological or-
ganization. Bioavailable phosphorus in the form
of phosphate is a key factor limiting growth
of species in many ecosystems. It is an es-
sential component of fertilizer in most agroe-
cosystems that provide the world’s food supply.
Along with nitrogen, phosphorous often limits
primary productivity in terrestrial, inland, and
oceanic ecosystems (Elser et al. 2000, 2007).

We see the likely origins of this phenomenon
on a much smaller scale. Phosphorous is also
particularly abundant in ribosomal RNA, such that
phosphate limitation in ecosystems is due to the
high demand for phosphorous by ribosomal RNA
during periods of rapid growth (Elser et al. 1996).
Additionally, phosphorous plays an important role
in energy storage and mobilization. Energy flow
through biological systems is associated with the
formation and hydrolysis of phosphate bonds, most
commonly in ATP, and the free energy change
associated with ATP hydrolysis enables enzymatic
work in cells. Paradoxically, a phosphate group
from ATP is also frequently transferred to pro-
teins, where it mediates information processing
by changing the functional characteristics of the
protein. If the enzyme in question is a phosphate-
adding kinase or a phosphate-removing phos-
phatase, phosphorylation or dephosphorylation en-
hances or suppresses enzyme activity. Cascades of
kinases and phosphatases are the signature signal-
ing mechanisms within a cell, turning processes
on and off. Phosphate is thus also essential to the
management of information processing by protein

phosphorylation. Finally, at the molecular level,
phosphate makes up the backbone of the criti-
cal information transmission molecules DNA and
RNA.

The competition is so fierce for phosphate
that some organisms have found ways to access
other forms of phosphorus (phosphite, hypophos-
phite, phosphonate, and phosphine) and some are
thought to specifically decrease the bioavailability
of phosphorus for competing organisms by con-
verting phosphate to phosphonate or phosphinate
molecules (Yu et al. 2013; Pasek et al. 2014).
Altogether, phosphorus illustrates the energy–
information–matter nexus at the molecular level
(as syntactic information in nucleic acid, as a
mechanism of releasing energy during ATP hy-
drolysis, and as phosphate transfer altering protein
function), at the cellular level (within signaling
cascades serving as switches for cellular processes),
and even at the ecosystem level (as a key limiting
nutrient). On a global scale, phosphorus demand is
expected to exceed supply in the coming decades,
leading to a world-wide scarcity and increase in the
commercial cost and need for recovery programs to
obtain this essential element (Desmidt et al. 2015).
Expanding our analysis of the energy–information–
matter nexus would open new research questions.
For example, do phosphorus limitation and conse-
quent mediation of information and energy fluxes
vary across taxa, at multiple trophic levels, or in
organisms of different motility and energy demands
(e.g., endotherms vs. exotherms)?

The above are just a few examples of why we view
the pursuit of the energy–information–matter nexus as
critical to uniting phenomena across scales in biological
systems. In each case, the benefits and challenges
of examining systems from the energy–information–
matter nexus across scales demonstrates the potential
power of this framework. These are:
� A baseline of research into direct energy, infor-

mation, and matter measurements and tradeoffs
using principles described in Box 1 already exists,
to differing degrees.

� Practical and applied benefits exist, such as being
able to accurately anticipate effects of global warm-
ing on the biosphere at all scales, to address a key
globally limiting element, and to generate life that is
possible but does not yet exist.

� A universal conceptual framework to view the
energy–information–matter nexus within and be-
tween scales is elusive.

� Matter must be considered both quantitatively
(mass) and qualitatively (substance and form).
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� An expanded concept of information sources and
types must be considered.

� Theoretical treatments of information capacity and
information use must be developed.

� Colloquial uses of “information” must be aligned
with the mathematical formulations.

Carrying the vision forward: next steps

The largest hurdle to successful application of the
nexus concept is determining practical implementation
strategies within our scientific enterprise. Success will
be possible only through a concerted effort from
multiple angles. Here we identify broad challenges as
starting points.

Educational
As a discipline, we can certainly improve the training
of biologists in a common vocabulary related to
energy, information, and matter at the curricular and
continuing education levels (Brewer and Smith 2011).
The ultimate goal is to train biologists at every stage
who are capable of communicating their work using
this vocabulary. While many undergraduate biology
curricula include physics and mathematics coursework,
these required courses rarely, if ever, focus on biological
applications of information and energetic approaches
or, even more critically, their nexus. We also propose a
coordinated effort to disseminate examples quantifying
energy, information, and matter at the nexus that can
be readily adapted for use in undergraduate courses.
Another concrete resource could be a primer of relevant
physics for biologists at any career stage. As our efforts
to reach across our own disciplines have taught us,
such a written resource will be most accessible if
informed by physicists and informaticists but written
by biologists using approachable examples. In sum,
theoretical approaches must be integrated into our
current empirical approaches.

Experimental
We propose to identify specific nexuses as research
targets for larger scale collaborative funding. Interdis-
ciplinary research teams would invent or identify new
scientific methodologies, quantitative measures, and
system components necessary to evaluate changes in
the balance of energy, information, and matter at all
biological levels. Effective ways to facilitate teams with
the essential collaborative skills have been addressed
recently by the National Research Council and others,
including an explicit focus on the importance of
diversity and interpersonal skills (Cheruvelil et al. 2014;
National Research Council 2015). For this and other

efforts to achieve scientific summits previously consid-
ered unconquerable, we rely on the continuing efforts
to remove systemic barriers in scientific communities
and their funders that limit interdisciplinary work
(Bromham et al. 2016).

In conclusion, we propose that studying the nexuses
of energy, information, and matter can reintegrate
biological subdisciplines. The stakes for reintegration
are increasingly high, as robust predictive models and
biological technologies may form essential responses to
climate change, may contribute to sustainable food and
fuel production, and may mitigate the associated risks
to social order. Employing energy, information, and
matter as common currencies that apply across spatial
and temporal scales provides unique opportunities
to integrate across levels of biological organization.
Expanding ongoing efforts to support team-based work
and novel approaches to train young investigators will
be at the forefront of these efforts to unite the plurality
of approaches and reduce sub-disciplinary boundaries
in the biological sciences.
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